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Applying the Liouville-Riemann fractional calculus, we derive and solve a frac- 
tional operator relaxation equation. We demonstrate how the exponent/? of the 
asymptotic power law decay ~ t -~  relates to the order v of the fractional 
operator dVdF (0<v<  1). Continuous-time random walk (CTRW) models 
offer a physical interpretation of fractional order equations, and thus we point 
out a connection between a special type of CTRW and our fractional relaxation 
model. Exact analytical solutions of the fractional relaxation equation are 
obtained in terms of Fox functions by using Laplace and Mellin transforms. 
Apart from fractional relaxation, Fox functions are further used to calculate 
Fourier integrals of Kohlrausch-Williams-Watts type relaxation functions. 
Because of its close connection to integral transforms, the rich class of Fox 
functions forms a suitable framework for discussing slow relaxation phenomena. 

KEY WORDS: Fractional calculus; nonstandard relaxation; random 
processes; fractal time processes; continuous-time random walks; fractional 
relaxation; Kohlrausch-Williams-Watts relaxation. 

1. I N T R O D U C T I O N  

Deal ing  with f rac t ional  o p e r a t o r  equa t ions  within the L i o u v i l l e - R i e m a n n  
f rac t ional  calculus, one finds tha t  F o x  funct ions come into p lay  in a ra ther  
na tu ra l  way. A l though  this class of funct ions has  rarely been used in 
physics,  their  basic  p roper t i e s  are well establ ished.  

The  F o x  funct ion or  H-funct ion ,  also called the general ized G-funct ion 
or  general ized Me l l i n -Ba rnes  function,  represents  a rich class of  funct ions 
which conta ins  funct ions such as Mei jer ' s  G-function,  hypergeomet r ic  
functions,  Wr igh t ' s  hypergeomet r i c  series, Bessel functions,  Mi t t ag -Lef f l e r  
functions,  etc., as special  cases. Therefore  it is of some interest  to s tudy  the 
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properties of the general H-function leading to results applicable in a wide 
range of physical problems. Some properties of the H-function in connec- 
tion with Mellin-Barnes type integrals were investigated by Barnes, (1) 
Mellin, (2) Dixon and Ferrar, (3) and others. In 1961, F o x  (4) studied the 
H-function in detail and derived theorems for H(z)  as a symmetrical 
Fourier kernel. Asymptotic expansions and analytic continuations of the 
Fox function and its special cases were derived by Braaksma. (5) Many 
properties of the H-function are reported in the book of Mathai and 
Saxena (6) along with some applications in statistics. More recently 
Schneider (v) derived a Fox function representation of L6vy stable distribu- 
tion functions. Explicit solutions of fractional wave and diffusion equations 
were given by Schneider and Wyss (8) in terms of Fox functions. Functions 
of this class also occur in connection with models in fragmentation 
kinetics. (9) 

Relaxation processes in complex systems such as viscoelastic materials, 
glassy materials, synthetic polymers, or biopolymers have in common that 
their relaxation function is nonexponential. Because of the large number of 
highly coupled elementary units responsible for relaxation, the process 
deviates from a simple Debye relaxation. The loss of independence and the 
requirement of high cooperation lead to a slower decay in terms of a 
Kohlrausch-Williams-Watts function 

~b(t) = q~oe (t/~): (1) 

or an asymptotic power law decay 

O ( t ) ~ c t  -~ (2) 

for large t. (1~ 
The purpose of this paper is to show that several properties of such 

slow relaxation processes can be expressed in terms of Fox functions. 
Hence, this wide class of functions offers a framework within which non- 
standard relaxation processes can be discussed. After listing some of the 
main properties of the H-function, we consider fractional relaxation in 
Section 3. Fractional relaxation provides one of the simplest fractional 
equations which contains differential or integral operators of noninteger 
order. Especially in the theory of linear viscoelasticity, fractional order 
equations are applied to describe the intermediate mechanical behavior of 
polymers lying between a Hookean solid and a Newtonian fluid. (11 17) The 
fractional relaxation equation is a special case of the fractional standard 
solid model formulated and discussed in ref. 16. In connection with the 
solution of fractional initial value problems, Fox functions turn up by using 
Laplace-Mellin transform techniques. 
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Continuous-time random walks (CTRW) offer a stochastic approach 
to processes in disordered systems. Several models have been discussed in 
the literature leading to Kohlrausch-Williams-Watts (KWW) or to power 
law type decays for the relaxation function. (18'19~ In Section 4 we show that 
fractional relaxation can be modeled by a special type of CTRW describing 
a trapping problem. With the help of Fox functions, a connection between 
CTRW and fractional relaxation for large times is established. Finally, in 
Section 5 the K K W  relaxation which plays a prominent role in relaxation 
in glassy materials is considered. Since the KWW function is expressible by 
a Fox function, explicit representations of Fourier integrals of the KWW 
function are obtained by using integral transformations of Fox functions. 

2. FOX F U N C T I O N S  

Fox's H-function is defined by the Mellin-Barnes type integral (4"5~ 

( I(al'~ 1 Ic Hp~,'~ z (bl, ill)'" (bq, f lq)J=~i h(s) z ~ ds (3) 

where h(s) is given by 

h(S) = I-I;= 1 V(1 - a j + ~ j s ) [ I 7 =  1F(bj-fljs) 
FI]=,. +1 V(1 - bj + ~s )  l-I;=. + 1 V ( a j -  ~:s) 

(4) 

where p, q, m, and n are integers satisfying 0 ~< n ~< p, l ~< m ~< q, and empty 
products are interpreted as unity. The parameters c 9 ( j =  1 ..... p) and /~j 
( j  = 1,..., q) are positive numbers and aj ( j  = 1,..., p) and bj ( j  = 1,..., q) are 
complex numbers satisfying 

gj(b h + v) # flh(aj - -  1 - 2 )  (5) 

for v, 2 = 0, 1,...; h = 1 ..... m; j = 1,..., n. Here C is a contour in the complex 
s plane separating the poles in such a way that the poles of F(b j - f l j s )  
( j =  1,..., m) lie to the right and the poles of F ( 1 - a j + ~ j s )  ( j =  1,..., n) lie 
to the left of the contour C. The Fox function is an analytic function of z 
which makes sense (i) for every z # 0  if p > 0  and (ii) for 0 <  [z[ < 3  -1 if 
# = 0, where 

q P 

# =  Z f l s -  E ~J (6) 
j = l  j = l  

and 
P q 

= 1-I ~Y' lq ~2~' (7) 
j = l  j = l  

822/71/3-4-25 
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Due to the factor z" in (3), the H-function is in general multiple-valued, but 
is one-valued on the Riemann surface of log z. 

The H-function is a generalization of Meijer's G-function, which is 
also defined by a Mellin-Barnes integral. The H-function reduces to the 
G-function if ccj=l and f l k = t  for all j = l ,  2,...,p and k = l ,  2 ..... q. If 
further m = 1 and p ~< q, the H-function is expressible by 

(hi, 1) .-(bq, 1) 

1~;=1 F(1 + b,-aj) z bl 
[ I 7 =  2 /~(1  -t- 61 - -  hi) I - IP= n + 1 r%-  bl) 

( l+bl-al'''''l+bl-apl+bl_b2,...,l+b, ) XpFq_l be;(-1)P- ' - lz  (8) 

in terms of generalized hypergeometric functions pFq. (6) Many well-known 
special functions, such as error functions, Bessel functions, Whittaker 
functions, Jacobi polynomials, and elliptic integrals, are included in the 
class of generalized hypergeometric functions. 

Prominent functions which do not fall into the class of the G-function 
are 

(L ) Hp~;qP+I z (0, 1)(1 -bq, fly)/=pOq \(bq, flq)' - z  (9) 

pl~q(Z) is called Maitland's generalized hypergeometric function or the 
Wright function. A special case of this type is the generalized Mittag- 
Leffler function E=,e given by 

,0,1, ) 
1,2 z ( 0 , 1 ) ( 1 - f l , ~ ) = E ~ ' B ( - - z )  (10) 

With the use of the theorem of residues the Fox function can be 
expressed by 

( [ ,o1.., 
Hpm'q ~ z (bl , f l l ) -  (bq, flq)/ -~res(h(s)zS) (11) 

where the residues are taken at the points s = (bj+ v)/fij ( j =  1,..., m; v = 
0, 1,...). If these poles are simple, (11) may be written as 

m.. ~ ~ 1-U"=lV(bj--gshOFl;=lr(1--aj+~js~k) 
~=1 k=o F b = . . +  1 r ( 1  --bj+~jshk) I I ~ = . +  1 r(aj--~js,k) 

( - 1 )k z ~  
x (12) 

k! flh 



Fox Function Representation of Relaxation 745 

with Shk= (b h + k)/il h. The prime means the product without the factor 
j=h.  The formula (12) can be used for the calculation of special values of 
the Fox function and to derive the asymptotic behavior for z ~ 0. 

The asymptotic expansions for Iz[ ~ oe are treated in ref. 5 in the 
general case. In particular, for p > 0 and n r 0 

/-/p','q(Z) ~ ~ res(h(s) z ~) (13) 

as Izl--' oo uniformly on every closed subsector of ]argzr ~<�89 The 
residues have to be taken at the points s = ( a j - l - v ) / c ~ j  ( j =  1 ..... n; 
v = 0, 1,...) and 2 is defined by 

q P 
2 = ~  i l j + ~  c 9 -  ~ i l j - ~  7j (14) 

j ~ l  j = l  j = m + l  j = n + l  

Symmetries in the parameters of the H-function are detected by 
regarding the definitions (3) and (4). Some important identities, needed 
later, are 

( a l '  ~l)""  (ap, o~p)'] 
Hp?'q z (hi, i l l )  (bq, flq)J 

(~ ( 1 - - b l ' i l l ) ' " ( l - b q ' i l q ) ' l  (15) 
=HqZj ( l - a , ,  e l ) ' " ( l  ap, C~p)J 

1 ( (al, o~1)..-(ap, O~p)~ 
~ H;mq n _z ( h i ,  i l l )  " (bq, ilq)/i 

=Hm'qn(z k (a"k~l)"'(ap'k~ (k>O) (16) 
(b l ,  k i l  ) (hi, kilp)] 

(a,,e,)...(ap, O~p)~ 
zaHr~'q Z (bl, i l l ) " "  (bq, ilq)J 

(alq-ff~176176176 (17) 

Further properties of the Fox function and expressions for elementary 
special functions by the H-function are listed in ref. 6. 

3. F R A C T I O N A L  RELAXATION 

Fractional calculus models have been proposed by Bagley and 
Torvik, (11) Koeller, (12) Wyss, (20) and Friedrich. (13) They obtained fractional 
differential equations by replacing formally first-order time derivatives 
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(d/dt)  by derivatives of fractional order (dV/dt v, 0 <v < 1). However, such 
models lead, in general, to diverging solutions at the initial time t = 0. Con- 
sequently, in order to resolve this divergence problem, one has to formulate 
well-posed fractional initial value problems (8'z1'14'16) by introducing frac- 
tional integral operators instead of fractional differential opera~ors. Dis- 
cussing the viscoelastic behavior of polymers and other complex materials, 
we started out with the standard Zener equation and formulated its 
fractional generalization. (16/We found that the solutions of this model can 
be represented by Fox functions. Besides the relaxation function, other 
viscoelastic functions, such as the retardation function, the storage and loss 
modulus, the relaxation time spectrum, and the retardation time spectrum, 
are expressible by analytical functions. (~6/The fractional model, which is a 
generalization of the Cole-Cole model, describes experimental data of 
polymers in a wide range of measurement. (15) Here we consider a simple 
fractional relaxation equation and demonstrate how Fox functions come 
into play as a consequence of applying Laplace-Mellin transform tech- 
niques to fractional operator equations. 

A fractional operator equation for a relaxation function ~b(t) satisfying 
the initial condition ~b(t=0)=~b 0 is obtained by starting out from the 
Debye relaxation 

~(t)= _!~(t) (18) 
"C 

Replacing the standard Riemann integral operator (1/r)oD~ -1 in the 
integrated form of (18) 

1 
- - o D t  - l ~ ( t )  ( 1 9 )  O(t)-Oo= 

by (1/z ~) oDS ,  we obtain the corresponding fractional integral equation 

1 
~)(t) - 0o = - -~ o D ~ ( t )  (20) 

( 0 < f l < l )  with incorporated initial value f fo=~(t=0) .  The fractional 
Liouville-Riemann operator in (20) is defined by (22) 

, D J f ( t )  = f~ (t - t ' )  ~-1  F(f l )  f ( t ' )  dt' (21) 

for /3 >0, which represents a fractional integration. For v = - f l  >/0 the 
fractional differential operator ~D~ is considered to be composed of a 
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fractional integration of the order n - v  ( n - 1  ~< v < n )  followed by an 
ordinary differentiation of the order n, i.e., 

aD[f(t) = ,D[-nf(t) (22) 

Applying r~ oD~ from the left on (20), one obtains the corresponding 
fractional differential equation for ~b(l): 

oD~(b(t)-~O F(l_f l ) -  ~ ar (23) 

with incorporated initial value ~b 0 = const. Here, use has been made of the 
fractional differentiation rule of a constant: oD~bo = Oot-V/F(1- v). 

In order to solve (20), we apply a Laplace transformation to this 
equation, leading to 

p - i  
~(p) = Y(~b(t), p) = ~b o 1 + (rp) -/~ (24) 

Now we can use a relationship expressing the Laplace transform of a Fox 
function. 

( I  (aj, ~j)'~ (25) m(t) = HT, t 

in terms of another Fox function by 

(1 - b j ,  fij) ~ (26) 

for O ~ < # d l  and 

p " + , q  (bj, j) } 

for # ~> 1, respectively. On the other hand, starting from 

~I m,n ( (aj, ~j)~ (28) 
(P)  = nnp'q P (bj, flj)J 

the inverse Laplace transform is given by 

71 ( t (1-bj, flj) ) (29) H(t)=Se-I(FI(p)'t)=. Hq'p+~ ( 1 - a j ,  ej), (1, 1) 
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for 0~<#~<1 and 

1 (~ (aj, ~j), (0, 1)) (30) H(t) = 7 HV'&q (bj, ~j) 

for # ~> 1, respectively. The relations (26), (27), (29), and (30) hold for )~ > 0 
and for 

l <~j<~n \ (Xj /I l <~j<~m , 

where Re denotes the real part of a complex number, and they are found 
by considering (23) 

JC/(~(0(t), p), s ) = r ( s )  ~/(0(t), 1 - s )  (32) 

with Jr the Mellin transform. In the case of (31), the contour C 
in (3) can be deformed in such a way that (3) is the Mellin inversion 
formula after substituting s by - s .  

Using the Fox-function representation of (24), (6) 

Zr 11 ( (1-1/f l ,  1/fl)) 
~(p)=--~H~:a ~p (1 1/fl, lift)] 

(33) 

we can write the solution of the fractional relaxation equation (20) as 

0(t) = e  (0, 1/fl), (0, 1) 

by applying (29). The series expansion 

0(t) = 0o ~ r(1 +/~k) (35) 
k = 0  

is obtained from (12). One recognizes that in the limit fl -~ l, the exponen- 
tial solution of the standard relaxation equation (18) is rediscovered. With 
the help of (13), the asymptotic expansion 

0(t) ~0o ~To r(1 - - ~ +  1)) (36) 

for t--. oo is found. Just as a byproduct of our fractional analysis, we 
comment that the leading-order term of (36), i.e., 0 ( t )~  t -e, exhibits the 
same inverse power law exponent fl which defines the fractional order 
of the Liouville-Riemann integral operator in (20). A similar observation 
concerning L6vy distributions has already been reported. (24) 
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Fig. 1. 
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Solution of the fractional relaxation equation (34) for various values of ft. 

The solution (34) of the fractional relaxation is plotted in Fig. 1 
for various values of ft. The function (34), which is also expressible by a 
Mittag-Lettler function via relations (16) and (10), is a nondiverging 
function displaying an asymptotic power law decay. One can distinguish 
two ranges: for large values of t the solution shows self-similar power law 
behavior and for t < r the relaxation is dominated by the initial value. We 
note that the fractional relaxation (34) is a special case of the fractional 
Zener model, which is discussed in ref. 16 in detail. 

Apart from the quite natural way in which the Fox functions enter in 
problems formulated by Liouville-Riemann fractional operators, their 
fractional derivatives and integrals are calculated by formally manipulating 
the parameters in the H-function. Going back to the definitions (3), (21), 
and (22), it follows that 

oD~zlz~Hpm.e,((az) ~ (aj,~j)~ 
(6,  

. . . . . . . .  +1 ((az)~ I (-c~,fi)(aj, ej)~ (37) =z  j 

for arbitrary v, for a, f i>0,  and ~+flmin(bJfij)>-I ( l ~ j ~ r n ) .  
Formula (37) is a generalization of relationships derived by Oldham and 
Spanier (22/for generalized hypergeometric functions, and thus it represents 
a more general setting. 

4. C O N T I N U O U S - T I M E  R A N D O M  WALKS 

In order to give a physical picture of fractional relaxation, we consider 
a random walk of a particle on a regular lattice. Some of the lattice sites 
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are occupied by traps which annihilate the particle if it jumps to such a site. 
The concentration of traps, i.e., the probability that a lattice site is a trap, 
is denoted by c. The property one is interested in is the survival law of the 
particle. This type of model was introduced by Glarum (251 in 1960 to 
describe the relaxation of frozen dipoles in a glassy material. Tlae statistical 
properties of random walks on lattices were originally derived by Montroll 
and Weiss. (26) In order to simulate walks on amorphous materials, hopping 
processes with waiting time distributions with probability densities of L6vy 
type ~ p ( t ) ~ t  - ~ - ~  were introduced. (27'28) In this way, the stochastic 
hopping on irregular structures is mimicked by hopping on periodic lattices 
with a "pathological" waiting time distribution. 

In a polymer the relaxation of the mechanical stress due to an imposed 
strain is regarded to be slowed down because of entanglements of the 
molecular chains. Since the entanglements behave for short times like 
chemical bonds, the flow of the material is hindered. Only if a sufficient 
amount of free volume is available at the position of an entanglement is 
the bond released. The free volume permits the material a conformational 
reorientation of chain segments leading to a relaxation. Thus, the macro- 
scopic relaxation of mechanical stress is determined by the migration of 
free volume. In the random walk model, the particle can be considered to 
be a package of free volume and the traps represent local conformal abnor- 
malities or entanglements. With the assumption of homogeneously dis- 
tributed, independent volume packages where the number of the packages 
is fewer than the number of the traps, the relaxation function is equal to 
the survival probability of such a particle. 

To obtain the survival probability of the particle, we consider the 
stochastic variables R~ and F~ denoting the number of distinct lattice site 
visited in n steps and the probability that trapping has not taken place up 
to the nth step, respectively. (29'19) They are connected by 

F. = (1 - c) R"-' (38) 

where we presupposed that the starting point of the random walk is no 
trap. The survival probability is given by ~b(t)= ((F.)). One has to perform 
an average over all distributions of traps as well as over all realizations of 
random walks characterized by the waiting time probability density ~b(t). 
Under the assumption that the stochastic processes in space and time are 
uncorrelated, ~b(t) can be written as 

~b(t) = ( ( r . ) )  = ~ ( r . )  ~b.(t) (39) 
n = 0  

In (39), ( F . )  is the average of F. over all realizations of the random walk 
in space. The sum over ~b.(t), denoting the probability density that exactly 



Fox Function Representation of Relaxation 751 

n steps occur in the time t, leads to the average over the realizations of the 
hopping processes. Because of this average in the continuous time, ~b(t) 
becomes a function of t instead of the discrete step number n. The probabil- 
ity density ~b~(t) is related to the waiting time probability density O(t). In 
the Laplace domain this relation is given by 

~n(P) 1 - t } (p )  (~(pl)n (40) 
P 

The expectation value (Fn )  cannot be calculated exactly. A good 
approximation is obtained by making use of the cumulant expansion (29) 

( F , )  = (exp 2) exp ( - 2) j (41) 
j 1 

with e ; =  1 -  c. For three-dimensional lattices and fractal lattices with a 
spectral dimension d >  2, the mean number of distinct sites visited S, = 
(Rn)  = K1 is asymptotically S ~ a n  for large n, where a is a constant 
depending on the lattice type. Restricting the sum in (41) to the first 
cumulant results in the Rosenstock approximation. Although this 
approximation delivers a poor description in one or two dimensions, it 
leads to a good agreement with simulations in three dimensions with low 
trap concentrations (c ~ 1). (19) Neglecting higher cumulants (j>~ 2), we can 
evaluate the sum in (39), leading to 

~(p)=e,a 1 - ~ ( p )  [1--e-; 'atp(p)] 1 (42) 
P 

Equation (42) connects the survival probability of the particle with its 
hopping probability in the Laplace domain. It is valid for small values of p. 

Now we are able to specify a hopping process leading to the fractional 
relaxation. Because of 

1 
P 

1 + (rp) ~ (43) 

[cf. (24) with ~b o = 1 ], the Laplace transform of the waiting time probabil- 
ity density is given via (42) by 

1 
t}(p) = A 1 + (?p) ~ + 1 (44) 

where we introduced the abbreviations 

C ( a + l ) 2 - - e  2 a 

A -  1 _e_(a+l)~ " a + l  (45) 
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and 

= (1 -- e -(a+ 1)x)1/~ r = [(a + 1)c] 1/a z (46) 

and utilized c ~ 1. 
By backtransformation of (44) to the time domain, one obtains 

~9(t) = ~ H 1 , 1  ( ~ (-1/f i ,  1/fi) )+6( t )  (47) 
,,2 (-1//~, 1/~), (0, 1) 

The waiting time probability density (47) shows a 6-type singularity at 
t = 0. However, because of the applied approximations, the result is only 
valid for large values of t. The asymptotic expansion reads 

qJ(t) ~ --( ~o= F( - f l k  - fl) (48) 

The waiting time probability density of the continuous-time random walk 
corresponding to a fractional relaxation exhibits a L6vy type decay 
qJ(t) ~ t -~ 1. Due to this slow decay the first and higher moments of the 
distribution do not exist. In particular, no internal time scale r * =  ( t )  = 
S dt t~(t) occurs. The process can be regarded to be a self-similar super- 
position of many processes with different time scales for which the term 
"fractal time process" was coined. (is) 

Although there is no internal time scale in the hopping process, the 
fractional relaxation shows a transition from the behavior dominated by 
the initial condition to the self-similar power law behavior at t = z. Equiv- 
alently, the self-similarity of the waiting time probability density ~(t) 
breaks down going to times smaller than ~. The relation between the two 
transition times given in (46) depends on the concentration c of the traps. 
We note that starting from the small-p asymptotic expansion 

we can also obtain the large-t behavior of 0(t) from a Tauberian 
theorem. (27) Since for continuous-time random walks only asymptotic rela- 
tions are available, the procedure applied here using integral transforms 
and Fox functions delivers solely asymptotic results as well. However, the 
external time scale f occurring in (47) and (48) is not provided by the 
Tauberian theorem. 

The CTRW model which is connected here to fractional relaxation 
belongs to the trapping problem where the number of particles is small 
compared with the number of traps. The opposite case with more particles 
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than traps, the target problem, leads to a KWW decay for fractal time 
processes indicating the important role of this type of relaxation. Following 
ref. 30, the survival probability of the trap ~b(t), i.e., the probability that 
none of the particles reaches the trap in the time t, is given by 

~b(t) = exp - c  I(t') dt' (50) 

The flux I(t) of the particles into the trap at t is connected with the waiting 
time probability density 0(t) in the Laplace domain by 

1 
7 ( p )  = - 1 ( 5 1 )  

E1 - P (O,  

where 

P(0, z) = L en(0) z" (52) 
n = 0  

is the generating function of the probability P,(0) that the particle starting 
at the origin returns at the nth step. P(0, ~(p)) is asymptotically a constant 
a = P(0, 1) for small p or large t, respectively. Since 

7(p) = F(1 + ~___._~) P-~ (53) 
CT ~ 

for the KWW relaxation (1) with ~b o = 1, the Laplace transform of ~9(t) 

= 1 1 
a 1 + ('Tp)-~ + 1 (54) 

is obtained from (51) with 

= ( 5 5 )  

which has the same form as (44). Hence, the KWW relaxation can be 
modeled by a CTRW (trapping problem) with a L6vy-type waiting time 
probability density given by (47) or (48) with A = 1/a and fl = cc 

5. K O H L R A U S C H - W I L L I A M S - W A T T S  R E L A X A T I O N  

In Section 3 we utilized a relationship based on (32) to express the 
inverse Laplace transform of a Fox function in terms of a Fox function as 
well. This is possible because of the close connection between Fox functions 
and inverse Mellin transforms. Similarly to (32), relations for other integral 
transforms instead of Lf exist. Here we consider the Fourier sine transform 
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~s and the Fourier cosine transform Yc. These transforms are required to 
analyze experiments carried out in the frequency domain by a relaxation 
function given in the time domain. For example, in mechanical relaxation 
experiments, G(t)= (~(t)+ Ge with the equilibrium modulus G.s describes 
the stress relaxation of a material after imposing a constant strain. If a 
harmonic oscillating strain e(co) is applied, the steady-state oscillating 
stress response a(co) is given by or(co)= G(co)e(co). Within the limits of 
linear response theory, the real part G'(~o) and the imaginary part G"(co) 
of the dynamical modulus [G(co)= G'(co)+ iG"(co)] are connected with 
q~(t) by (31) 

G'(co) = G e + 03 (~(t) sin(cot) dt = Ge + CO~s((~(t), co) (56) 

and 

and 

6"(co) = co qs(t) cos(cot) dt = co&(~(t), co) 

Utilizing the properties (23~ 

Jg(~s(~(t), co), s) = F(s) sin ~ Jg(~b(t), 1 - s) 

(57) 

(58) 

~(~-c(~(t),  co), s)=V(s)cos ( 2 ) ~ ( ~ ( t ) , l - s )  (59) 

between Fourier and Mellin transforms, we obtain the integral transforms 
of H(t) given in (25) as 

i (1 - b j ,  flj), (1/2, 1/2) 
Hq++I"P+2 ( co (1, 1), (1 - a j ,  ~j), (1/2, 1/2)] 

.~s(H(t), co) = Hp::~,x+l(1 (O, 1),(a,,otj),(i/2,1/2)] 

(bj, flj), (1/2, 1/2) / 

and 

{ 7~ t4n+,,-, (1-bj,/3j), (1, 1/2) ) 
gc(H(t) ,co)= ~--q+l 'P+2(c~ (1, 1), (1-aj ,~j) ,  (1, 1/2)J 

~___..om,n+l ( 1 1 ( 0  , 1), (g/j, 0~j), (0, 1/2)'~ 
(7.0 p+2. q+l (bj,/3j), (0, 1/2) J 

/~<1 

#~>1 

(60) 

/~<1 

(61) 
if (31) and ~>0  hold. 
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Now we can give an H-function representation of the Fourier integrals 
of modified KW W relaxation functions such as 

__(t~: 1 C 1 , 0  - -  ~;b(t)=c(~)Bexpl \;/ 3=~H~ (fl/o:,l/a)) {62) 
Because of/z > 1 for 0 < c~ < 1, we get 

gs(r co)= c~ ,,, ( 1 (0, 1), (1/2, 1/2) "~ 
~co H2,2 ~ (fl/~, I/a), (1/2, 1/2)/  

=c ~ (_l)kF(l+fl+ak) 
k~ cok=o 

[; cos (fl + - -  (63) 
j k ~ r /  

and 

c~ i .~ (1]  (0,1),(0,1/2) ~c(r (.o)= ~ n2:~. , ~  (/~/~, 1/'~), (0, 1/2)/ 

C ~ (_l)k+lr(l+fl+otk) 
cok= o k! 

x sin (fl + - -  (64) 
jkcoZ/ 

The asymptotic behavior for co--, 0 

ffs(q~(t),co)~ c ~ (-1)*F((2k+2+/~)/cO(cor) 2k+2 (65) 
coa k=o (2k + 1)! 

~c(q)(t),co)-~ ~ (-1)kF((2k+l+fl)/c~)(cor) 2k+1 (66) 
= o (2k)! 

is attained from the asymptotic expansion of the H-function given by (13). 
For  fl = 0, the results concerning the KWW function are included in these 
formulas. The series and asymptotic representations (63)-(66) in the special 
case /~ = 0  agree with the results reported by Bendler. (32) The asymptotic 
series (65) and (66) can also be derived by expanding the integrants in (56) 
and (57). However, within the framework of Fox functions the general 
properties of the H-function can be employed. Because of the wide class of 
functions which can be expressed by Fox functions, this formal procedure 
is not restricted to the KWW relaxation or fractional relaxation. 
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6. CONCLUSIONS 

The fractional calculus presents a powerful mathematical method for 
deriving and solving fractional equations. Exact analytical solutions of such 
equations are obtained in terms of Fox functions by using Laplace and 
Mellin transforms. The fractional relaxation shows a transition from a 
behavior dominated by the initial value to an inverse power law decay. 
Apart from the solution technique for fractional order equations leading to 
Fox functions, fractional derivatives and integrals of Fox functions can be 
formally calculated within this general class of functions. 

We further showed that fractional relaxation can be interpreted by a 
special type of continuous-time random walk. With help of Laplace trans- 
forms of Fox functions, an asymptotic connection between the relaxation 
function and the waiting time probability density of the hopping process is 
established. The slow algebraic decay is a consequence of the L6vy-type 
waiting time distribution, which defines no internal time scale. However, a 
transition time is also found in the probability density function. 

The interrelations between Fourier and Mellin transforms lead to for- 
mulas for Fourier sine and Fourier cosine transforms. Thereby for a given 
relaxation function, storage and loss moduli are attained. The procedure is 
not restricted to fractional relaxation. Since, e.g., the KWW function is 
expressible by a Fox function, explicit representations of the integral trans- 
forms of the KWW function in terms of such known functions are 
obtained. Hence, within the general class of Fox functions various features 
of slow relaxation processes can be detected in a rather elegant way. 
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